Double-strand break repair in Ku86- and XRCC4-deficient cells
نویسندگان
چکیده
منابع مشابه
Double-strand break repair in Ku86- and XRCC4-deficient cells.
The Ku86 and XRCC4 proteins perform critical but poorly understood functions in the repair of DNA double-strand breaks. Both Ku 86- and XRCC4-deficient cells exhibit profound radiosensitivity and severe defects in V(D)J recombination, including excessive deletions at recombinant junctions. Previous workers have suggested that these phenomena may reflect defects in joining of the broken DNA ends...
متن کاملDouble strand break repair.
DNA double-strand breaks (DSBs) are the most dangerous form of DNA damage and can lead to death, mutation, or malignant transformation. Mammalian cells use three major pathways to repair DSBs: homologous recombination (HR), classical nonhomologous end joining (C-NHEJ), and alternative end joining (A-NHEJ). Cells choose among the pathways by interactions of the pathways with CtIP and 53BP1. HR i...
متن کاملDNA Double-Strand Break Repair
ownloade C regulates a myriad of genes controlling cell proliferation, metabolism, differentiation, and apoptosis. lso controls the expression of DNA double-strand break (DSB) repair genes and therefore may be a ial target for anticancer therapy to sensitize cancer cells to DNA damage or prevent genetic instability. report, we studied whether MYC binds to DSB repair gene promoters and modulates...
متن کاملDNA double-strand break repair
The integrity of genomic DNA is crucial for its function. And yet, DNA in living cells is inherently unstable. It is subject to mechanical stress and to many types of chemical modification that may lead to breaks in one or both strands of the double helix. Within the cell, reactive oxygen species generated by normal respiratory metabolism can cause double-strand breaks, as can stalled DNA repli...
متن کاملDNA Double Strand Break Repair in Mitosis Is Suppressed by Phosphorylation of XRCC4
Cells are continuously subjected to DNA damage, the most cytotoxic form of which is the DNA double-strand break (DSB). DSBs arise from endogenous sources, such as collapsed replication forks, or can be caused by exogenous agents that include ionizing radiation, reactive oxygen species, and chemotherapeutic drugs such as topoisomerase II poisons [1]. During interphase, DSBs are repaired by one o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nucleic Acids Research
سال: 1998
ISSN: 0305-1048,1362-4962
DOI: 10.1093/nar/26.23.5333